Abitur 1978 Mathematik LK Infinitesimalrechnung I

Der Graph G_f einer Funktion f besteht aus den Punkten P(x|y) mit $x = \ln t$ und $y = \ln \left(1 + \frac{1}{t}\right)$. Dabei durchläuft der reelle Parameter t den größtmöglichen Bereich B.

Teilaufgabe Teil 1 1a (5 BE)

Geben Sie B an und schließen Sie hieraus unmittelbar auf den Definitionsbereich D_f und den Wertebereich W_f der Funktion f.

Teilaufgabe Teil 1 1b (5 BE)

Geben Sie die Koordinaten der zu $t \in \{1, 2, 3, 4, 5, 6\}$ gehörenden Kurvenpunkte an und tragen Sie diese Punkte in ein Koordinatensystem ein (Längeneinheit 5 cm; Querformat).

Teilaufgabe Teil 1 1c (3 BE)

Stellen Sie nun die Funktionsgleichung y = f(x) auf, zeigen Sie, daß der Graph G_f monoton fällt und untersuchen Sie das Krümmungsverhalten.

[Ergebnis:
$$f(x) = \ln (1 + e^{-x})$$
]

Teilaufgabe Teil 1 1d (8 BE)

Weisen Sie nach, daß die beiden Geraden mit den Gleichungen y = 0 und y = -x Asymptoten von G_f sind. Skizzieren Sie nun unter Verwendung aller Ergebnisse den Graphen G_f .

Der Graph G_f und die positiven Halbachsen des Koordinatensystems begrenzen eine sich ins Unendliche erstreckende Fläche F, von der nun untersucht werden soll, ob sie endlichen Inhalt besitzt.

Teilaufgabe Teil 1 2a (12 BE)

Betrachten Sie zunächst jene Teilfläche von F, die zwischen den zu x=0 und $x=\ln n$, $n\in\mathbb{N}$ und $n\neq 1$, gehörenden Ordinaten liegt.

Welches Integral gibt den Inhalt J_n dieser Teilfläche an?

Geben Sie nun für dieses Integral eine Obersumme S_n an, indem Sie im Intervall $[0; \ln]$ die Teilungspunkte $\ln 2, \ln 3, \ldots, \ln(n-1)$ einführen und die entsprechenden Flächenteile durch umbeschriebene Rechtecke ersetzen (Zeichnen Sie einige dieser Rechtecke in die Skizze ein!)

Hinweis: Das Ergebnis kann in der Form $S_n = \sum_{k=1}^{n-1} \left(\ln \frac{k+1}{k} \right)^2$ geschrieben werden.

Teilaufgabe Teil 1 2b (7 BE)

Erläutern Sie kurz anhand einer Nebenskizze die folgenden Ungleichungen: $\ln x \leq x-1$

Verwenden Sie diese Ungleichung, um die in Teilaufgabe 2a gefundene Obersumme S_n durch $\sum_{k=1}^{n-1} \left(\frac{1}{k}\right)^2$ abzuschätzen.

Teilaufgabe Teil 1 2c (7 BE)

Für x > 1 gilt $\frac{1}{x^2} < \frac{1}{x-1} - \frac{1}{x}$. Begründen Sie diese Beziehung. Vergröbern Sie mit Hilfe dieser Ungleichung die in Teilaufgabe 2b gewonnene Abschätzung

für S_n .

Teilaufgabe Teil 1 2d (3 BE)

Zeigen Sie nun mehr, daß die oben beschriebene Fläche F einen endlichen Inhalt J besitzt, für den die Abschätzung J < 2 gilt.

Gegeben ist die in \mathbb{R} definierte Schar der Funktionen

$$f_k: x \to f_k(x) = \left\{ \begin{array}{ccc} x^{-k} \cdot e^{-\frac{1}{|x|}} & & \text{für } x \neq 0 \\ 0 & & \text{für } x = 0 \end{array} \right. \quad \text{mit } k \in \mathbb{N}_0$$

Jede dieser Funktionen ist auch bei x = 0 stetig (Nachweis nicht verlangt!).

Teilaufgabe Teil 2 1a (3 BE)

Beweisen Sie, daß die zugehörigen Graphen G_k für gerades k achsensymetrisch und für ungerades k punktsymetrisch sind.

Teilaufgabe Teil 2 1b (4 BE)

Berechnen Sie $f'_k(0)$ unmittelbar aus der Definition der Ableitung.

Teilaufgabe Teil 2 1c (10 BE)

Zeigen Sie, daß für x > 0 gilt: $f'_k(x) = \frac{e^{-\frac{1}{x}}}{x^{k+2}} \cdot (1 - kx)$ und geben Sie ohne Benützung der 2. Ableitung die Extrempunkte von G_k in \mathbb{R} an.

Teilaufgabe Teil 2 1d (1 BE)

Weisen Sie nach, daß alle Graphen G_k für x = 1 einen gemeinsamen Punkt haben.

Teilaufgabe Teil 2 1e (4 BE)

Berechnen Sie für die Funktionen f_0 und f_2 die Grenzwerte für $x \to \infty$ sowie die Ableitungswerte an der Stelle x = 1.

Teilaufgabe Teil 2 1f (11 BE)

Skizzieren Sie die Graphen G_0 und G_2 unter Berücksichtigung der bisher gewonnenen Ergebnisse (Längeneinheit 5 cm).

Nun wird die ebenfalls in \mathbb{R} definierte Integralfunktion $F: x \to F(x) = \int_0^x f_2(t) dt$ betrachtet.

Teilaufgabe Teil 2 2a (4 BE)

Welches Symmetrieverhalten zeigt der zugehörige Graph G_F ? Begründen Sie kurz Ihre Antwort.

Teilaufgabe Teil 2 2b (7 BE)

Geben Sie für x > 0 mit Hilfe der Substitutionsmethode eine integralfreie Darstellung von F(x) an. Begründen Sie die Zulässigkeit des Verfahrens.

Teilaufgabe Teil 2 2c (3 BE)

Ist F mit F_0 identisch? Wie lautet der Funktionsterm F(x) für x < 0?

Teilaufgabe Teil 2 2d (3 BE)

Welchen Wert hat $\lim_{x\to\infty} F(x)$? Bestimmen Sie jene Stelle x_0 , für die gilt: $F(x_0) = \frac{1}{2}$, und geben Sie eine geometrische Deutung dieses Ergebnisses.