BE

LM1. INFINITESIMALRECHNUNG

I.

Gegeben ist die Schar der in IR definierten Funktionen $f_k : x \mapsto (k^2x + k)e^{-kx}$ mit $k \in \mathbb{R}^+$. Der Graph von f_k wird mit G_k bezeichnet.

4

1. a) Bestimmen Sie die Schnittpunkte von G_k mit den Koordinatenachsen und untersuchen Sie das Verhalten von f_k für $x \to +\infty$ und $x \to -\infty$.

5

b) Bestimmen Sie Lage und Art des Extrempunkts von G_k .

9

- [zur Kontrolle: $f'_k(x) = -k^3 x e^{-kx}$] c) Zeigen Sie, dass G_k genau einen Wendepunkt W_k besitzt, und geben Sie dessen Koordinaten an. Weisen Sie nach, dass ey = k(3 - kx)eine Gleichung der Wendetangente t_k ist.
 - Geben Sie eine Gleichung der Kurve C an, auf der alle Punkte W_k liegen.

5

d) Berechnen Sie $f_1(1,6)$. Zeichnen Sie unter Berücksichtigung aller bisherigen Ergebnisse G_1 und t_1 in ein gemeinsames Koordinatensystem im Bereich $x \in [-1,5;4]$ (Längeneinheit 2 cm).

4

2. a) Durch $F(x) = (ax + b) e^{-x}$ ist eine Stammfunktion von f_1 gegeben. Bestimmen Sie a und b.

3

b) Der Graph G₁ und die Koordinatenachsen begrenzen im ersten Quadranten ein Flächenstück, das sich ins Unendliche erstreckt. Zeigen Sie, dass dieses Flächenstück einen endlichen Inhalt besitzt.

5

3. Begründen Sie, dass die Einschränkung von f₁ auf IR⁺eine Umkehrfunktion h besitzt, und geben Sie deren Definitions- und Wertebereich an. Der Term von h soll nicht explizit ermittelt werden. Begründen Sie, an welcher Stelle die Ableitung von h ein lokales Extremum aufweist. Bestimmen Sie den Wert der Ableitung von h an dieser Stelle.

4. Der Funktionswert $f_1(t)$ sei die Maßzahl für die Masse einer Substanz in Abhängigkeit von der Zeit. Dabei ist t die Maßzahl der von Messbeginn an in Sekunden gemessenen Zeit ($t \ge 0$).

3

a) Zu welchem Zeitpunkt ist die Massenabnahme am stärksten? Begründen Sie Ihre Antwort.

2

b) Nach T Sekunden ist die Anfangsmasse auf die Hälfte abgesunken. Bestimmen Sie ein Intervall der Länge $\frac{1}{10}$, in dem T liegt.

40